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Abstract

The applicability of self-organizing maps (SOM) for the classification of chromatographic systems or components of
chromatographic systems based on data taken from literature is shown. The SOM approach is compared to dendrogram and
principal components analysis (PCA) approaches. It has been shown that the distance between classified objects could reveal
linear correspondence with quantity to be optimized, e.g. resolution, so it can be applied in the chromatographic method
development. SOMs can also be applied for prediction of chromatographic quantities. It is shown that SOM-based response
surface modeling is comparable to triangular presentation of mobile phase composition response surfaces.  2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction graphic quantities to be modified. In other words, the
limitations of a particular classification and/or classi-

Classification is a widely used tool in chromato- fication tool against chromatographic properties
graphy, especially in the early phases of method should be stated. It is hard to believe that any
development [1–7]. Though many people use classi- chromatographic system classification can be univer-
fication and ‘similarity’ in an intuitive way there are sally applicable over the wide range of analytes and
few theoretically well-founded similarity measures for the optimization of large number of different
and classification tools like dendrograms [2,6] or chromatographic quantities. Some insight into the
PCA [3,7] that have found widespread use. Yet, applicability of particular chromatographic system
several questions are to be addressed about the classification gives certain measures of classification
applicability of these tools regarding the chromato- quality like the percent of variance that is explained

by, for example, the first two principal components.
The existence of such measures makes a difference*Corresponding author. Tel.: 1385-1-481-8304; fax: 1385-1-
between different classification tools.485-6201.

ˇ´ ´E-mail address: bebamms@nana.pharma.hr (M. Medic-Saric). In the last decade many different machine-based
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learning tools have been developed, especially differ- 2. Theory
ent paradigms of supervised learning neural nets,
whose applicability has been proved for regression A graphical representation of SOM training is
and prediction in many areas including chromatog- given in Fig. 1. It can be seen that every ith object
raphy [8–10]. While those tools can be applied for that is supposed to be classified is represented, in our
classification tasks, the unsupervised learning-based case with a three-dimensional vector (x ). Of coursei

approach seems to be more appealing for this the dimension ( j51, 2, . . . , m) of the vector whose
purpose. It is very important to make a classification components are in our case chromatographic quan-
that is as robust as possible against changes of tities, is variable and its value is defined by the
chromatographic properties one wants to modify or analyst based on some previous assumptions that we
optimize based on a particular classification of will deal with later in the text. Neurons are repre-
chromatographic systems or chromatographic com- sented by circles that form an array with 333
ponents classification. That task is just the opposite dimension. The array, called the feature map does
to the usual tasks of supervised learning. The cost is not need to be quadratic, as is the case in Fig. 1.
more or less lowered prediction accuracy compared Arrows pointing to every neuron suggest comparison
to the supervised learning techniques depending on of x with a vector that represents the kth neuroni

the property one is trying to modify and input data. (w ) and the outcome of that comparison is repre-k

Of course, one would expect that the solution to that sented by arrows directed outwards. It is obvious that
task should be taken with greater caution, and that is the dimensions of those two kinds of vectors have to
the reason why classification is better suited for early be the same. The ‘comparison’ can be mathematical-
phases of method development than for later phases. ly described with some distance measure D :i,k

It simply gives a good starting point for method
D 5 x 2 w (1)u ui,k i kdevelopment because of its robustness against differ-

ent quantities one wants to optimize while it can be
Since the map training is an iterative process, it isfollowed by supervised learning techniques in later

necessary to initialize w values at the beginning ofkphases of method optimization.
the training. The most important fact about the mapA number of unsupervised learning techniques
training is the ‘winner takes the most’ principle:have been used in different areas of science but the

minmost usual one is SOM, which has also been applied i(x ) 5 arg D (2)i i,kkin different areas of chemistry like molecular model-
ing and drug design [11,12], identification of com- This heuristic states that the neuron that is the
pounds based on mass spectra [11], etc. Quite closest to the specific x is the winner i(x ) in a sensei isurprisingly, we have managed to find only one that it changes its vector components in the most
paper on the application of SOMs in chromatography significant manner as a result of the nth iteration
[1]. Since SOM is a member of unsupervised learn- step. But neurons in some predefined neighborhood
ing techniques it suits previous pointed chromato- of the winner also change their vector components
graphic systems classification tasks, and it also and both types of change are described by Eq. (3):
satisfies the need for a classification quality measure.

w (n 1 1) 5 w (n) 1h(n)h (n)D (n) (3)Since dendrograms and PCA became benchmarks of k k k,i(x ) k,i(x )i i

classification algorithms it is appealing to compare
In this equation we can see two new quantities,the possibilities of SOM against the possibilities of

each predefined by the analyst. h is known as thethese tools. The nice thing about SOM is that it can
learning-rate parameter. It defines how the rate ofeasily be converted to a prediction tool [12] and used
change of w depends on the value of n. Thefor response surface modeling and chromatographic i

learning-rate function usually has an exponentialproperty optimization. So, based on the same data
form. h stands for the amount of change of w inone can apply a classification of chromatographic k,i(x ) ki

systems and prediction of experimental outcome at the neighborhood of the i(x ) and it is a function ofi

the same time. iteration step, interneuron distance and the feature
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Fig. 1. Graphical presentation of the SOM training algorithm.

map topology, e.g. the way of connecting neurons. TLC datasets were used to analyze the general
The most usual map topologies are rectangular, applicability of this approach. Depending on the
hexagonal or toroidal. More about learning rate specific dataset and the purpose of the analysis, we
functions, network topologies and other related mat- have taken capacity factors / retention times or mobile
ters can be found in Refs. [13–15]. phase composition as input vector x components.i

Though it is an unsupervised learning technique, Only the dataset taken from Ref. [5] contains input
SOM can also be modified for prediction [12]. This variables from different origins, i.e. seven physical
is based on the fact that the normalized difference chemistry descriptors of C and C HPLC columns.8 18

D can easily be transformed to a probability For testing of applicability of SOM in methodi,k

measure of finding the ith object located at the kth development and for comparison with dendrogram
neuron. Multiplication of this probability function by classification of chromatographic objects we used
the chromatographic quantity that one wants to discriminating power (DP ) with 5% error factor as ai

optimize followed by summation over all objects measure of resolution [2]. For comparison of SOM-
gives the prediction of the quantity for all objects based prediction with multiple linear regression
located at the specific neuron. (MLR)-based prediction, two different measures of

chromatographic separation were used: (DP ) andi

information content (I ) with 5 and 10% error factorsi

3. Experimental (E) [2].
Software implementations of the SOM algorithm

Data chosen for testing of SOM applicability in are widely available. SOM PAK 3.1 [13] is used for
]

chromatography method development was taken this work though it is not the only software im-
from literature [2,5,16–19]. Three HPLC and three plementation of SOM that is freely available. Calcu-
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lations were made on a personal computer that runs 4. Results
under Linux. In all cases we have used rectangular
quadratic SOM topology and bubble algorithm for 4.1. Comparison of SOMs and dendrograms
network training. In order to test whether predefined
conditions enable the network to settle down within a The comparison of SOMs (feature maps are not
certain number of iterations we have done all shown) and dendrograms is presented in Fig. 2. It is
network training in triplicate with different initial w based on topological distances between chromato-k

component values. All training was made in two graphic systems in dendrograms (number of knots on
steps. The first step was SOM training with a wider the shortest path between two chromatographic
neighborhood and faster learning-rate parameter and systems) and SOMs (number of neurons on the
it was followed by the second training with de- shortest rectangular path between two chromato-
creased values of these parameters in order to avoid graphic systems). SOM dimensions were varied
local minima problems. For the first training step, the between 333 and 939 neurons. To exclude noise

6number of iterations (n) was chosen to be 10 and effects on correlation, besides the Pearson correlation
the learning rate parameter was 0.05, while in the coefficient, the Spearman rank correlation coefficient

7second step, the number of iterations was 10 and the has been calculated and the results are practically the
learning rate parameter was 0.02. Neighborhood same. This suggests that the observed correlations
parameters (h(i)) chosen for SOM training are given are not due to, or destroyed by noisy data. More
in Table 1. importantly, there is no trend on the dependence of

A Mathematica 4.0 multivariate statistics add-on correlation coefficients connected with map dimen-
program was used for PCA and MLR calculations. sions. Though there is a 0.7 value of the correlation
As a measure of prediction quality, the relative coefficient observed (Fig. 2(C)), correlations be-
prediction error based on ‘leave one out’ method was tween dendrogram and SOM topologic distances are
used and implemented in Mathematica 4.0. In order generally weak.
to compare the prediction quality of the original
MLR method used by the authors of Ref. [17] to 4.2. Applicability of SOMs in method development
SOM-based prediction quality, MLR calculations
were performed and mobile phase compositions of Fig. 3 represents the dependence of the Pearson
chromatographic systems were used as input data correlation coefficient between discriminating power
while capacity factors were dependent variables. (DP ) and topological or Euclidean feature mapi

Based on these results, different chromatographic distances of chromatographic systems from the best
separation measures were calculated by KT1 soft- one among them (in terms of DP ) on the number ofi

ware [2]. neurons per map side (feature maps are not shown).
These correlation coefficients give an insight in the
applicability of SOMs for chromatographic method
development. In cases where significant correlation

Table 1 exists it is justified to change the existing chromato-
Values of neighborhood parameter h(i) chosen for SOM training

graphic system with a similar one in order to
Map dimensions 1st training 2nd training improve some chromatographic property, in our case

step step
resolution measured by DP . In this context, the termi

333 3 1 ‘similar’ stands for chromatographic objects whose
535 6 5 topological or Euclidean distance in SOM is rela-
737 12 10

a tively small. The practical meaning of this finding is939 15 12
that one can replace old chromatographic conditions11311 20 18

a with a new set of conditions without losing or evenIn order to increase the percentage of explained variance in
for improving the value of some property because,Section 4.3, values of h(i) for the 1st and 2nd training step were

17 and 14, respectively. for example the old system includes toxic or expen-
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Fig. 2. Correspondence between dendrograms and SOMs described by Pearson and Spearman rank correlation coefficients. (A)
Chromatographic objects taken for analysis are 11 TLC systems described by 11 R values of test compounds. Input data are taken fromF

Tables 2 and 3 in Ref. [19]. (B) Chromatographic objects taken for analysis are nine HPLC systems described by 16 capacity factor values
of test compounds. Input data are taken from Tables 2 and 3 in Ref. [18]. HPLC systems differ by flow-rate and/or mobile phase
composition. (C) Chromatographic objects taken for analysis are 11 TLC systems described by eight R values of test compounds. InputF

data are taken from Tables 2 and 3 in Ref. [16].

sive reagents or some components of the system are ditions in SOM or not. This step saves a lot of effort
not available. Those steps are important in early because running this calculation is a lot easier than
phases of method development. Chromatographers running a great number of experiments. Still SOM
are very often in a position where they should make training requires a certain number of experiments.
such changes but without evidence of correlation As can be seen in Fig. 3, the correlation coefficient
between similarity measure and certain chromato- between similarity measure and DP varies signifi-i

graphic properties, mistakes are possible and the cantly. In Fig. 3A, one cannot speak about significant
result is wasted time and high cost of method correlations at all. This means that this map is not
development. An advantage of the application of suitable for mentioned purpose. But in Fig. 3B–D, a
SOMs for this purpose is that when one has trained correlation exists and these maps are suitable. There
the SOM based on a certain number of experimental is also no trend in dependence of correlation co-
results and found the mentioned correlation, in order efficients connected with map dimensions. So, in
to find a similar set of conditions to the existing one, Fig. 3A, better results probably can be obtained by
one need not to run one or more experiments. Rather changing map dimensions or by changing map
one ‘feeds’ the existing map with the set of con- topology. But care should be taken over the number
ditions one believes that are suitable and checks of compounds and number of different sets of
whether they are close to the existing set of con- chromatographic conditions that are tested because
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Fig. 3. Correlation between DP and trained SOM distances* of chromatographic objects. *Correlations of DP with Euclidean distances ofi i

chromatographic objects are presented by gray bars, while correlations with topological distances are presented by black bars. (A)
Chromatographic objects taken for analysis are 11 TLC systems described by 11 R values of test compounds. Input data are taken fromF

Tables 2 and 3 in Ref. [19]. (B) Chromatographic objects taken for analysis are 11 TLC systems described by eight R values of testF

compounds. Input data are taken from Tables 2 and 3 in Ref. [16]. (C) Chromatographic objects taken for analysis are 15 TLC systems
described by 11 R values of test compounds. Input data are taken from Tables 2 and 3 in Ref. [2]. (D) Chromatographic objects taken forF

analysis are nine HPLC systems described by 16 capacity factor values of test compounds. Input data are taken from Tables 2 and 3 in Ref.
[18]. HPLC systems differ by flow-rate and/or mobile phase composition.

map distances primarily depend on input data. Final- 4.3. Comparison of SOMs and PCA
ly, depending on the property one wants to optimize
one should decide what chromatographic system In order to compare the two mentioned classifica-
descriptors one would use as input. We have used tion tools, we have used data from Table 1 in Ref.
capacity factors or retention times of test compounds [5]. Based on that source, we have trained an 11311
since we were interested in resolution, but later in SOM whose feature map is presented in Fig. 4. Fig.
the text we shall show an example in which we use 1 from Ref. [5] corresponds to Fig. 4 in this paper.
mobile phase composition as an input vector that The reason for choosing this paper for comparison
describes a specific chromatographic system. The lies in the fact that authors of Ref. [5] have described
possibility to change independent or input variables only 86% of variance using the first two principal
is another good characteristic of the SOM approach components in PCA presented in Fig. 1 [5]. In order
because it gives some insight about variables that are to improve percent of variance explained by PCA,
critical for modeling of some separation quantity. the authors should have included three or even four
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Fig. 4. SOM-based classification of 85 RP-HPLC columns. Input data are taken from Table 1 in Ref. [5].

principal components but then graphical representa- better suited tool for the visualization and classifica-
tion of the classification of HPLC columns they were tion of chromatographic objects than PCA. Another
dealing with would be impossible. It can be seen reason for the taking mentioned paper for com-
from Fig. 5A that four principal components are parison is given in Fig. 2 of Ref. [5]. In order to
needed to explain 95% of the original data variance. obtain results which were more easily explainable
So, those authors made their conclusions based on the authors were in the position to exclude polar
relatively low acceptance criterion. Fig. 5B shows embedded C columns from analysis and even then18

the dependence of the percent of explained variance they explained only 62% of the variance using the
on map dimensions. It can be seen from Fig. 5B that first two principal components. This step is not
the 11311 map explains over 98% of variance. On necessary and it is made in an ad hoc manner.
the other hand, graphical representation is still easily Without making this step in obtaining our results,
reproduced in two dimensions (Fig. 4). So it can be they show a very nice correspondence to the results
concluded that, at least in this case, the SOM is shown in Figs. 1 and 2 in Ref. [5]. Non-end capped
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one is analyzing. So it is still not clear what the
explanation is for this result.

4.4. SOM-based prediction

Until now we have shown few applications of
SOMs in the classification of chromatographic ob-
jects. But a very simple modification of this meth-
odology leads to the application of SOMs for the
prediction of, in our case, chromatographic quan-
tities. Since the difference between (w ) and (x )k i

determines the location of the chromatographic
object at the particular neuron, one can look at this
difference as a probability measure of finding a
particular chromatographic object in a particular
neuron if this difference is normalized across all
neurons for every chromatographic object. This
normalization is the only step one needs to make to
modify SOMs for prediction purposes. The products
of the value of the quantity one is trying to predict

Fig. 5. (A) Dependence of explained variance on the number of with the corresponding normalized difference sum-
principal components included in graphical presentation of PCA-

med up over all chromatographic objects gives thebased classification of 85 RP-HPLC columns. Input data are taken
prediction of that quantity for each neuron [12]. Thisfrom Table 1 in Ref. [5]. (B) Dependence of explained variance

on the map dimensions of the SOM-based classification of 85 approach is very practical. When one uses it for
RP-HPLC columns. Input data are taken from Table 1 in Ref. [5]. method optimization, one simply should find the

neuron with the best-predicted value of the quantity
C columns, polar embedded C columns and C one is trying to optimize and the vector of that18 18 18

acidic columns of both types are classified in the neuron (w ) represents the set of the best chromato-k

same manner. Even this comparison shows one graphic conditions one can get based upon this
advantage of the SOM approach. In the original prediction. This is the advantage over the more
paper, all classifications were made by the authors’ classical back-propagated neural network approach
intervention. Namely, all partitions represented by where the prediction of the best conditions is not
circles in Figs. 1 and 2 in Ref. [5] were made simple. The same statement is also true for the
without any theoretical explanation, while all parti- method robustness achievement.
tions and subsets in SOM (Fig. 4) are in fact Fig. 6 presents an example of SOM-based predic-
represented by positioning of members of subset in tion. The data for SOM training were taken from
the same or in the neighboring neurons. In other Table 2 in Ref. [17] because the authors of this paper
words, all subsets are based on the difference used a triangular mixture design for mobile phase
between neuron vectors (w ) and chromatographic optimization in order to achieve the best possiblek

column vectors (x ). The only important difference in resolution of the test mixture and this opens thei

results is the classification of C columns. While the possibility to compare this approach with SOM.8

authors of Ref. [5] classify them in more or less the Mobile phase composition data were taken for SOM
same subset, our results are different. It could be training. DP with 5% error factor was calculatedi

misclassification in case, but from the experimental based on capacity factor data from the same table.
point of view, it is very often found that one can These data were used for SOM-based prediction
change one C column with a C column and get described earlier. Finally, the results are presented as18 8

more similar results then when one changes it with a map on to which the response surface has been
another C column depending upon the property overlaid (Fig. 6). Lighter areas represent higher18
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Fig. 7. Dependence of relative prediction error of the SOM-based
and MLR-based prediction of different measures of chromato-
graphic separation. Input data are taken from Table 2 in Ref. [17].

acceptable. Probably it can be improved by increas-
ing the number of chromatographic test systems,
adjustments of the number of iterations or by chang-
ing network topology.

Fig. 6. SOM-based prediction of DP value. Input data, in thisi

case mobile phase compositions, are taken from Table 2 in Ref.
[17]. Lighter areas present higher values of DP . The DP surfacei i

has been overlaid on a 737 feature map (neuron coordinates are 5. Conclusions
given on the left and lower side of the map; contour values are
presented by small numerals placed near the corresponding The requirement for a quantitative approach to the
contour itself; chromatographic mobile phase composition vector

classification of chromatographic objects for methodpositions are presented by dots and large numerals).
development purposes has been presented. It is
shown that all classifications do not need to correlate

values of DP calculated for data from Table 2 in with the property one is trying to modify. Conse-i

Ref. [17]. A visual comparison of this figure with quently, without evidence of correlation between
corresponding figures in the original paper (Fig. ‘similarity’ measure and chromatographic property
2(C,D) shows a nice agreement. Still, it is a lot of interest there is no guarantee for any classifica-
easier to visually analyze results in Fig. 5. The tion, whether it is SOM-based or not that it is well
triangular mixture design is not easy to interpret even suited for a specific method development purpose.
for ternary mobile phases and it is a particularly SOMs can be applied in the classification of
complex task when one deals with quaternary mobile chromatographic objects, but also for response sur-
phase and that is the case in the original paper [17]. face analysis and chromatographic property predic-

Until now, we have used qualitative comparison to tion. Comparisons show a better correspondence of
prove the applicability of SOM-based response sur- SOM-based classification with PCA than with de-
face analysis. To test the quality of prediction in a ndrograms. Quantitative measures and complexity of
more quantitative manner we used the leave-one-out graphical representations show that SOMs are at
(LOO) method. Results of comparison between least as well suited if not even better suited than the
MLR-based prediction of chromatographic resolution other two classification methods for method develop-
measures used by the authors of Ref. [17] and ment purposes.
SOM-based prediction are given in Fig. 7. It can be A reasonable value of relative error of prediction
seen that MLR has a better prediction quality than and an easy way to find the best predicted conditions
SOM, and this is expected since SOM is not trained are promising regarding use of SOM-based predic-
using any information on dependent variables, in this tion in chromatography.
case chromatographic separation measures. Still, it The SOM approach for method development is
can be stated that SOM-based prediction quality is applicable to practically any type of chromatography.
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